본문 바로가기
KNIME | 잘 안 보이니까 시각화 해주세요! 이번 Part에서는 KNIME으로 데이터를 활용하는 방법 중 하나인 데이터 시각화를 알아보고자 해요! 데이터 시각화는 데이터를 그래프, 차트 등과 같이 시각적 요소를 활용해 나타내는 것을 뜻해요. 시각화를 통해 한 눈에 파악하기 어려운 정보를 보다 쉽게 이해할 수 있고, 데이터를 기반으로 실행 가능한 인사이트를 도출할 수 있어요. Part. 1 KNIME이라고 들어봤어요? (링크) Part. 2 데이터 처리는 알겠는데 전처리는 뭐예요? (링크) Part. 3 잘 안 보이니까 시각화 해주세요! Q1. 시각화라면 막대그래프, 선그래프 이런 것을 말하나요?? A1. 네! 맞아요! 질문처럼 아주 간단한 그래프부터 복잡한 그래프까지 아주 다양하게 있어요! 아래의 이미지를 참고해주세요! 최상단의 행부터 각각 Dis.. 2023. 2. 22.
이.빅.스 | 빅데이터는 왜 Hadoop에 저장해야 하는가? 안녕하세요. 두 번째 이.빅.스 입니다. “세계적 커피 브랜드 기업 S사의 위치, 교통 패턴, 지역 인구 통계 등의 데이터를 활용한 최상의 매장 입점 위치 분석”, “전자상거래 및 클라우드 웹 서비스 기업 A사의 사용자의 연령, 검색 기록, 취미 등에 기반한 주문 상품 예측” 4차 산업혁명 시대의 핵심 키워드인 “빅데이터”는 다섯가지의 특징으로 요약될 수 있습니다. 방대한 양(volume), 빠른 증가속도(velocity), 다양한 종류(variety)의 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 뜻하며, 빅데이터를 통한 가치창출이 나날이 중요해짐에 따라 정확성(Veracity)과 가치(Value)도 중요해졌습니다. 위의 사례들이 그 대표적인 예입니다. 기업에서 흔히 말하는 “빅데이터를 도입한다.. 2023. 1. 19.
엑.기.스 | 2023 트렌드, Rabbit Jump 2022년 다들 잘 지내셨나요? 힘들었던 한 해였을까요? 성과로 채워진 한 해였을까요? 이제 2023년(계묘년)이 시작되었습니다. 나우엑셈 구독자 여러분들 모두 새해 복 많이 받으시고 새해에도 껑충껑충 뛰는 토끼처럼 활기차고 활력있는 한 해를 보냈으면 합니다. 한 해가 시작될때마다 일년 동안 어떠한 키워드들이 우리의 삶과 연관되는지, 또한 이러한 키워드들을 통해 현재 살고 있는 우리가 어떠한 인사이트를 제공받을 수 있는가에 대해 관심이 모입니다. 2023년에 주목할 키워드 10개, 'Rabbit Jump'를 소개해 보겠습니다. R: Redistribution of Average | 평균 실종 첫 번째 키워드는 바로 ‘평균 실종’이에요. ‘평균’, 즉 중간치란 개념이 퇴색되고 있다는 뜻이에요. 코로나가 지.. 2023. 1. 19.
DB 인사이드 | PostgreSQL Vacuum - Monitoring : XMIN’s Horizon Vacuum Series를 통한 Vacuum 동작원리에 이어 이번에는 Monitoring 시 주의해야 할 사항에 대해 이야기해 보도록 하겠습니다.PostgreSQL에 익숙하지 않은 사용자의 경우 Vacuum의 중요성만 인지할 뿐, 단순히 Autovacuum을 Enable 시키거나 Job(Cron)을 통한 Manual Vacuum을 수행하는 것으로 필요한 처방을 다 했다고 생각하곤 합니다.하지만, MVCC 모델에서 파생된 복잡/다양한 메커니즘은 비단 [Auto]vacuum Operation뿐만 아니라 일반적인 Database 운영 과정까지 지대한 영향을 끼칩니다. 본 문서에서는 그중 idle in transaction상태의 Session이 Vacuum Operation과 맞물렸을 때 발생하는 상황에 대해 .. 2023. 1. 19.
Chapter 3-2. 모델 훈련 Chapter 3-2. 모델 훈련 머신러닝 모델을 블랙박스로 취급하여도 모델을 훈련시키는 것은 가능하다. 하지만 훈련이 이루어지는 원리를 이해한다면 적절한 기법을 선택하여 훈련시간은 단축시키거나 모델의 성능을 높이는 것이 가능하다. 이번 장에서는 Chapter 3. 머신러닝에서 소개한 학습률, 비용 함수 등에 이어서 모델훈련에 필요한 몇 가지 개념을 다룬다. 경사 하강법 이전 장에서 언급한 것과 같이 비용 함수(Cost function)는 입력 데이터에 대한 오차를 계산하는 함수이다. 머신러닝에서는 오차를 줄이기 위해 다양한 최적화 알고리즘이 이용된다. 그 중에서 경사 하강법(Gradient Descent)은 가장 일반적인 최적화 알고리즘이다. 그림과 같이 비용 함수가 주어진 경우 경사 하강법은 파라미터.. 2023. 1. 19.
DB 인사이드 | PostgreSQL Setup - Migration & Upgrade 성능 및 주의사항 ※ 목차 ※ 업그레이드 주의사항         Role & Tablespace         Extension 업그레이드 성능         Backup 성능         Restore 성능         pg_upgrade 성능         필요 Disk 여유공간         정리 Data 검증         Object 개수 확인         Procedure 개수 확인         Trigger 개수 확인         Sequence Last Value 확인  PostgreSQL의 신규 기능들을 사용하기 위해서, 혹은 EOL 등의 이유로 PostgreSQL Major 업그레이드를 고려할 수 있습니다. PostgreSQL Major 업그레이드하는 방법은 여러 가지가 존재하며 어떠한 업그레이.. 2022. 11. 23.
Chapter 3. 머신러닝 Chapter 3. 머신러닝 머신러닝의 정의와 활용 머신러닝이란 무엇인가? 머신러닝(Machine Learning)은 인공지능(Artificial Intelligence)의 한 부분으로, 입력된 데이터로부터 컴퓨터가 학습하도록 프로그래밍하는 것을 말한다. 이 챕터에서는 머신러닝을 분류하는 두 가지의 방법에 대해 알아볼 것이다. * 머신러닝을 분류하는 첫 번째 방법: 지도 학습, 비지도 학습, 준지도 학습, 강화 학습 지도 학습(Supervised Learning)은 훈련 데이터에 레이블(정답)이 있는 학습 방법이며, 대표적으로 K-nearest neighbors(K-최근접 이웃), Linear regression(선형 회귀), Logistic regression(로지스틱 회귀), Support vecto.. 2022. 11. 23.
KNIME | 데이터 처리는 알겠는데 전처리는 뭐예요? Part. 1에서는 KNIME에 대해 간략하게 설명해 드렸어요! 이번 시간에는 데이터 분석의 첫 단계인 데이터 전처리에 대해 말씀드릴게요. Part. 1 KNIME이라고 들어봤어요? (링크) Part. 2 데이터 전처리 Q1. 데이터도 알겠고, 처리도 알겠는데, 전처리는 뭔가요? A1. 전처리라는 용어는 말 그대로 ‘전’ + ‘처리’, 작업을 하기 전 원재료를 가공하는 것을 말해요. 영어로는 ‘preprocessing’ 이라고 하죠! 예를 들면, 데이터의 형태를 통일시켜야 할 때가 있어요! 왼쪽 생년월일을 보면 여러 형식으로 저장되어 있어요! 모든 방식이 날짜를 뜻하지만, 숫자의 길이도 다르고 숫자 사이를 구분하는 문자(‘-‘ 나 ‘/’)도 다르죠? 보기에도 힘들고, 컴퓨터조차 날짜로 인식하지 못해요. .. 2022. 11. 23.
Chapter 2-3. 기초 시계열 분석 Chapter 2-3. 기초 시계열 분석 이번 장에서는 시계열 분석에서 자주 나오는 용어 및 알아야 할 개념들을 간단하게 정리해보고자 한다. 확률과정(Stochastic Process) 확률과정은 확률변수들의 수열이다. 즉, {Y(t), t = 0, ±1, ±2, ...} 형태로 나타낼 수 있으며, 시계열 데이터를 이해하려면 Y(t) 들의 결합 확률 분포를 분석해야 한다. 왜냐하면, 일반적인 시계열 데이터는 독립이 아니기 때문에, 결합 확률 분포를 각 확률 변수의 분포들로 분해할 수 없기 때문이다. 하지만, 평균과 분산을 분석하면 결합 확률 분포의 많은 부분을 이해할 수 있다. 평균, 분산, 공분산, 상관계수 앞서 Chapter 1. 기초 선형대수 및 통계학에서 간단하게 소개한 개념들을 수식으로 알아보자.. 2022. 10. 26.