Chapter 2-3. 기초 시계열 분석
Chapter 2-3. 기초 시계열 분석 이번 장에서는 시계열 분석에서 자주 나오는 용어 및 알아야 할 개념들을 간단하게 정리해보고자 한다. 확률과정(Stochastic Process) 확률과정은 확률변수들의 수열이다. 즉, {Y(t), t = 0, ±1, ±2, ...} 형태로 나타낼 수 있으며, 시계열 데이터를 이해하려면 Y(t) 들의 결합 확률 분포를 분석해야 한다. 왜냐하면, 일반적인 시계열 데이터는 독립이 아니기 때문에, 결합 확률 분포를 각 확률 변수의 분포들로 분해할 수 없기 때문이다. 하지만, 평균과 분산을 분석하면 결합 확률 분포의 많은 부분을 이해할 수 있다. 평균, 분산, 공분산, 상관계수 앞서 Chapter 1. 기초 선형대수 및 통계학에서 간단하게 소개한 개념들을 수식으로 알아보자..
2022. 10. 26.
KNIME | KNIME이라고 들어봤어요?
코딩 없이도 데이터 분석을 할 수 있다 NOW 엑셈 뉴스레터를 통해 데이터 분석 플랫폼인 ‘KNIME’에 대해서 설명을 드리려고 해요. 총 5 Part로 나누어 진행되니 기대해주세요! Part.1 KNIME Q1. KNIME이 무엇인가요? A1. 질문에 답하기 전에 데이터 분석을 먼저 알아볼까 해요. 데이터 분석이란, 원시데이터를 가공해 의미있는 데이터를 만들고 의사 결정에 도움이 되는 정보를 이끌어내는 것을 뜻해요. 원시데이터는 여러가지가 될 수 있어요! 키, 댐 수위 변화, 평점, 성별, 나이, 뉴스기사, 음성, 사진(각각 연속형, 시계열, 이산형, 이진데이터, 문자열, 소리, 이미지 데이터) 등을 예로 들 수 있겠네요. 이러한 원시데이터를 사람이 직접 톺아보며 유의미한 정보를 찾기에는 매우 번잡하고..
2022. 9. 27.