Chapter 4-5. AutoEncoder 오토인코더란? 오토인코더는 데이터의 압축을 통해 특성을 학습하는 비지도 방법의 인공 신경망이다. 오토 인코더의 목적은 고차원 데이터를 저차원으로 압축하여 데이터의 중요한 특성을 찾는 것이다. 오토인코더는 3가지 부분으로 이루어진다. 먼저, 인코더는 입력 데이터를 작은 차원으로 압축하는 부분이다. 이어지는 바틀넥 부분은 압축된 정보를 담고 있는 영역으로 오토인코더 알고리즘의 핵심에 해당한다. 이 부분을 잠재(latent) 영역, 혹은 코딩(coding) 영역이라고도 부른다. 마지막 디코더 부분은 압축되었던 데이터를 다시 입력형태와 동일하도록 변형하는 부분이다. 신경망의 핵심인 바틀넥 부분에 대해 조금 더 이야기하겠다. 바틀넥은 통과하는 정보의 양을 제한하기 위해 존재한다. 아키텍처를 보면 바틀넥의 크기가 .. 2023. 12. 27. 이전 1 다음